Initial Events during the Evolution of C4 Photosynthesis in C3 Species of Flaveria 1[W][OPEN]
نویسندگان
چکیده
The evolution of C4 photosynthesis in many taxa involves the establishment of a two-celled photorespiratory CO2 pump, termed C2 photosynthesis. How C3 species evolved C2 metabolism is critical to understanding the initial phases of C4 plant evolution. To evaluate early events in C4 evolution, we compared leaf anatomy, ultrastructure, and gas-exchange responses of closely related C3 and C2 species of Flaveria, a model genus for C4 evolution. We hypothesized that Flaveria pringlei and Flaveria robusta, two C3 species that are most closely related to the C2 Flaveria species, would show rudimentary characteristics of C2 physiology. Compared with less-related C3 species, bundle sheath (BS) cells of F. pringlei and F. robusta had more mitochondria and chloroplasts, larger mitochondria, and proportionally more of these organelles located along the inner cell periphery. These patterns were similar, although generally less in magnitude, than those observed in the C2 species Flaveria angustifolia and Flaveria sonorensis. In F. pringlei and F. robusta, the CO2 compensation point of photosynthesis was slightly lower than in the less-related C3 species, indicating an increase in photosynthetic efficiency. This could occur because of enhanced refixation of photorespired CO2 by the centripetally positioned organelles in the BS cells. If the phylogenetic positions of F. pringlei and F. robusta reflect ancestral states, these results support a hypothesis that increased numbers of centripetally located organelles initiated a metabolic scavenging of photorespired CO2 within the BS. This could have facilitated the formation of a glycine shuttle between mesophyll and BS cells that characterizes C2 photosynthesis.
منابع مشابه
Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria.
The evolution of C4 photosynthesis in many taxa involves the establishment of a two-celled photorespiratory CO2 pump, termed C2 photosynthesis. How C3 species evolved C2 metabolism is critical to understanding the initial phases of C4 plant evolution. To evaluate early events in C4 evolution, we compared leaf anatomy, ultrastructure, and gas-exchange responses of closely related C3 and C2 speci...
متن کاملC2 photosynthesis generates about 3-fold elevated leaf CO2 levels in the C3–C4 intermediate species Flaveria pubescens
Formation of a photorespiration-based CO2-concentrating mechanism in C3-C4 intermediate plants is seen as a prerequisite for the evolution of C4 photosynthesis, but it is not known how efficient this mechanism is. Here, using in vivo Rubisco carboxylation-to-oxygenation ratios as a proxy to assess relative intraplastidial CO2 levels is suggested. Such ratios were determined for the C3-C4 interm...
متن کاملThe role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria
C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolutio...
متن کاملPhotosynthetic Characteristics of C3-C4 Intermediate Flaveria
Four species of the genus Flaveria, namely F. anomala, F. liaris, F. pubescens, and F. ramosissima, were identified as intermediate C3-C4 plants based on leaf anatomy, photosynthetic CO2 compensation point, 02 inhibition of photosynthesis, and activities of C4 enzymes. F. anomala and F. rawosissina exhibit a distinct Kranz-like leaf anatomy, similar to that of the C4 species F. trinervia while ...
متن کاملIncreasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective
C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013